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Resonant Frequencies and Field Distributions for
the Shielded Uniaxially Anisotropic Dielectric

Resonator by the FD–SIC Method
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Abstract—New formulations for resonant modes of a shielded
uniaxially anisotropic dielectric resonator (DR), such as sapphire,
are proposed. They are solved by the finite-difference and si-
multaneous iteration with the Chebyshev (FD–SIC) acceleration
method. Like an isotropic DR cavity, one azimuthal field is used
for azimuthally invariant TM or TE modes and two TM fields
are used for azimuthally variant hybrid modes. It is shown
that the governing equation for TE modes is the same as that
for the isotropic DR case. For TM and hybrid modes, more
general  (= rH�) and Hr–Hz formulations than those for the
isotropic DR are derived, respectively. Cylindrical cavities loaded
with a rod or ring DR can be easily modeled and analyzed by
the present method. Resonant frequencies and field distributions
can be accurately and efficiently obtained. Numerical results of
resonant frequencies of rod sapphire DR cavities are compared to
those by the mode-matching method in the literature to verify the
present approach. The electric- and magnetic-field distributions
are also presented for hybrid modes of the uniaxially anisotropic
DR cavity.

Index Terms—Dielectric resonators, hybrid modes, uniaxial
dielectric.

I. INTRODUCTION

DIELECTRIC resonators (DR’s) made of single-crystal
materials, such as sapphire, have received considerable

attention recently due to the very low-loss nature for con-
structing high-stability and low-noise microwave oscillators
[1]–[3]. High-performance oscillators often require extremely
high resonators fabricated of sapphire dielectric resonators
shielded by high-temperature superconducting films [4]–[6].
In addition, this structure of the DR-loaded superconductor
cavity is used in turn to measure the surface resistances of
underdevelopment superconductors [6]–[8]. In these cases, the
traditional ceramic DR’s are not appropriate for these very
low-loss applications. In addition to the widely used sapphire
material, the other single-crystal materials to build very low-
loss DR’s are still under investigation [5], [9].

Resonant frequencies and field distributions of resonant
modes of the isotropic DR-loaded cavity have been extensively
analyzed with various methods. Basic characteristics of DR
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resonant modes can be found in [10] and comparisons of
different numerical methods can also be found in [10] and
[11]. The literature and numerical methods for analysis of the
uniaxially anisotropic DR are somewhat limited compared to
the isotropic DR, and are described in this paper. Approximate
solutions have been used to obtain the resonant frequencies
of a rod sapphire DR [12] and the field distributions of a
ring sapphire DR [13]. However, the uniaxially anisotropic
nature should be taken into account for accurate designs of
practical applications. This demands rigorous and efficient
numerical methods to analyze resonant modes of the uniaxially
anisotropic DR-loaded cavity. For the kind of approaches using
modal expansions, the Rayleigh–Ritz methods [14], [15] with
hollow-cavity eigenfunctions as the bases and the radial mode-
matching method [16] can be found. The former uses global
basis functions and the latter is the commonly used mode-
matching methods generalized from isotropic to anisotropic
DR systems. Another kind of approach uses the discretization
of fields, such as the finite-difference (FD) method or FEM.
However, very few investigations can be found in the literature
for the anisotropic DR. To our knowledge, only the finite-
integration technique [17] with the full formulation and the
FEM [15] with the full formulation can be found recently.
The shifted power method is used to solve the resulting large
matrix eigenproblem in [17]. This approach will be inefficient
when a DR with somewhat large dielectric constant exists
in the cavity [11], and the discretization density employed
in [15] is only about 800 nodes in the– cross-section
plane. It is preferable to use more nodes to obtain more
accurate results.

In this investigation, new compact formulations for TM
and hybrid modes of the uniaxially anisotropic DR cavity
are proposed and derived in Section II. It is shown that
the resulting governing equation of TE modes is the same
as that for the isotropic DR using the azimuthal electric
field. These equations and the associated boundary conditions
are solved by the finite-difference and simultaneous iteration
with the Chebyshev (FD–SIC) acceleration method [11]. The
required central processing unit (CPU) time goes with
and the memory space goes linearly with, where is
the total number of unknowns [11]. As a result, accurate
resonant frequencies and field distributions of the uniaxially
anisotropic DR-loaded cavity can be efficiently obtained with
high discretization density by the present numerical technique.
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(a)

(b)

Fig. 1. Configurations of (a) uniaxially anisotropic dielectric rod resonator
in the cylindrical cavity with supports and (b) uniaxially anisotropic dielectric
ring resonator in the cavity.

The numerical results for the rod sapphire DR cavity are shown
in Section III and are compared to those obtained with the
radial mode-matching method [16]. Furthermore, the resonant
electromagnetic-field distributions are presented to investigate
the resonant nature of the sapphire DR cavity for some hybrid
modes.

II. FORMULATION

The configurations of the cylindrical cavity loaded with a
uniaxially anisotropic DR are shown in Fig. 1. In Fig. 1(a),
a rod DR of height and diameter is placed between
two supports with isotropic dielectric constant, while a ring
DR of inner diameter is placed in the cavity depicted in
Fig. 1(b). Both systems are assumed to be lossless. The optical
axis of the uniaxially anisotropic DR is in the-direction.
Hence, total structures with circularly cylindrical symmetry
can be analyzed in the two-dimensional (2-D)– plane. The
spatial distributions of the dielectric constant tensor in the
whole cavity are given by

(1)

From Maxwell’s equations with nonmagnetic materials, the
magnetic and electric fields satisfy the equations

(2a)

and

(2b)

Fig. 2. 3-D view of a dielectric rod resonator in the cylindrical cavity and
the equatorial and meridian planes for plots of field distributions.

respectively. To formulate the governing equations of resonant
modes, it is compact and efficient to use the minimum number
of field components. Furthermore, it is convenient to use the
magnetic field as it is possible, since the magnetic fields are
continuous across the dielectric interfaces. We show that (2a)
is used for governing equations of TM and hybrid modes,
and (2b) is used for TE modes. For this, several quantities
in cylindrical coordinates are defined. The transverse parts
(to azimuthal direction ) of the vector field and relative
permittivity are represented by and

, respectively. Accordingly, the curl operator
can be written as

(3)

where the transverse part of the operator is defined as
.

With these definitions and notations, we can expand (2a)
into its field components in cylindrical coordinates by using
(3). The azimuthal and transverse components of (2a) are
obtained as

(4a)

and

(4b)

respectively. The azimuthal dependence is assumed for
(4b). It is seen from (4a) that for the azimuthally invariant
modes ( ), the field is not coupled with transverse
fields . Hence, we can obtain the governing equation for TM
modes by using only the azimuthal field . For azimuthally
invariant TE modes, there is no field. It is preferable to
use the formulation with only the azimuthal electric-field as
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(a) (c)

(b) (d)

Fig. 3. Field distributions ofEH11� mode for the sapphire DR cavity depicted in Fig. 1(a) and considered in Case 1 of Table I. (a) Magnetic fields
in the circular cross-section plane (z = H=4), as shown by the dashed line of (b). (b) Magnetic fields in the meridian plane� = �=2 [ � = 3�=2,
as shown by the dashed line of (a). (c) Electric fields in the equatorial plane, as shown by the dashed line of (d). (d) Electric fields in the meridian
plane � = 0 [ � = �, as shown by the dashed line of (c).

that for TM modes. Hence, (2b) will be used for the governing
equation of TE modes. For hybrid modes ( ), field in
the second term of (4b) can be uncoupled from the transverse
components if it is substituted by the transverse fieldsvia
the divergence equation of the magnetic field as

(5)

Hence, only transverse fields are used in the governing
equation. The two transverse fields and are coupled
to each other by the inhomogeneous distributionsof the
whole cavity in the first term of (4b). However, in this inves-
tigation we consider only the piecewise constant distribution
of . At permittivity discontinuity, boundary conditions
are imposed. Although is not coupled to at each
homogeneous region, they are coupled through the boundary
conditions. In the following subsections, the resulting govern-
ing equations at each homogeneous region and the required
boundary conditions are presented for TM, TE, and hybrid
modes, respectively.

A. TM and TE Modes

The governing equation for TM modes at each homoge-
neous region can be derived from (4a) as

(6)

where . The required boundary conditions at per-
mittivity discontinuity are the continuity of tangential electric
fields. For example, for the structure depicted in Fig. 1(a), the
boundary condition at uniaxially anisotropic DR interfaces is

for interfaces parallel with axis

(7a)

for interfaces parallel with axis

(7b)

where , , and denote the derivatives being performed
on the air, dielectric, and support sides, respectively. The
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boundary conditions at the other material interfaces can be
obtained similarly and the boundary conditions at the-axis,
metallic conductors, and symmetry plane are the same as those
for the isotropic case [11].

For TE modes, the only nonzero field components are,
, and . The divergence of electric fields is equal to

zero ( ) in (2b). Hence, the governing equation
and boundary conditions are the same as those in isotropic
mediums with scalar relative permittivity distribution
[11]. The governing equation is again shown as

(8)

where . These can be expected directly because the
TE modes have no component, and hence,has no effects.

B. Hybrid Modes

For azimuthally variant modes, all six electric and magnetic
fields are not zero in general. Hence, these modes are called
hybrid modes. The governing equation at each homogeneous
region can be presented after a little tedious, but straightfor-
ward, manipulation from (4b) and (5) as

(9a)

(9b)

This is the – formulation for the uniaxially anisotropic
DR cavity. Compared to the formulation for isotropic mediums
with scalar relative permittivity distribution [11, eq. (8a),
(8b)], (9b) is the same as (8b) in [11] and (9a) reduces to (8a) in
[11], where and the term associated with
vanishes. The required boundary conditions at DR interfaces
are the continuity conditions of and by the divergence
(5) and the curl equation of the magnetic field, respectively.
Therefore, the required boundary conditions at the material
interfaces, -axis, metallic conductors, and the symmetry plane
are all the same as those in the isotropic DR cavity [11].

The associated governing equations and boundary condi-
tions for TM, TE, and hybrid modes are solved by the newly
developed FD–SIC method, which is an efficient way to solve
the rendering large and sparse matrix eigenvalue problem

[11]. Therefore, very accurate results can be
obtained by using a large number of discretization points.
Equally spaced meshes are preferred over graded meshes
both for the simpler FD formulations and for saving the
computation time and memory space. In this investigation, we
use only the equally spaced node points.

III. N UMERICAL RESULTS

A. Comparison of Resonant Frequencies

The sapphire DR cavity with supports as depicted in
Fig. 1(a) is first analyzed by using the examples used in

TABLE I
COMPARISON OF THERESONANT FREQUENCIES(GHZ) FOR THE

SAPPHIRE DR CAVITIES DEPICTED IN FIG. 1(a) (D = 10:0

mm, b = 15:6 mm, l = 13:0 mm, �1 = 1, �2 = 1:031)

[16]. Two different heights of DR’s in the same cavity are
investigated. The structure dimensions and dielectric constants
are shown in Cases 1 and 2 of Table I. Equally spaced node
points of 78 by 65 for the FD grid are used by using symmetry
in the -direction. Hence, there are two symmetry types for
each of the TM, TE, and hybrid modes. For convenience,
the mode designation shown in Table I is the same as that in
[16]. modes are obtained by using the perfect magnetic-
conductor (PMC) condition in the middle-section plane of
the DR cavity, while modes are obtained by using the
perfect electric-conductor (PEC) condition. The calculated
resonant frequencies of some modes are presented in Table I.
These six modes are the first mode in each group of mode
type. The required computation time for one hybrid mode
is about 30 s on a Pentium-166 PC. The results investigated
in [16] by the mode-matching method are also shown for
comparison with almost the same physical dimensions. The
dimension deviations of the two investigations for DR’s in two
cases are within 0.15%. The maximum deviation is 0.32%,
which happens at the cavity diameter. It is seen that these
two results are in good agreement and discrepancies between
these two methods are within 0.4%.

B. Resonant Field Distributions

Resonant field distributions of the above rod sapphire DR
cavity are also presented in this investigation by the appropri-
ate post-processing on the eigenfields. The tangential electric
or magnetic fields of hybrid modes in some cross-section
planes for Case 1 of Table I are shown. The three-dimensional
(3-D) view of this DR cavity is depicted in Fig. 2, and fields
are plotted in circular cross-section planes and meridian planes.
Due to symmetry of the structure in the-direction, the circular
cross-section plane at is the symmetry plane, called
the equatorial plane [10, pp. 298–299]. The field distributions
of , , , and modes are shown in
Figs. 3–6, respectively. It is known that there is a twofold
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(a) (c)

(b) (d)

Fig. 4. Field distributions ofHE11� mode for the same sapphire DR cavity as Fig. 3. (a) Magnetic fields in the equatorial plane, as shown by the dashed
line of (b). (b) Magnetic fields in the meridian plane, as shown by the dashed line of (a). (c) Electric fields in the circular cross-section plane (z = H=4),
as shown by the dashed line of (d). (d) Electric fields in the meridian plane, as shown by the dashed line of (c).

degeneracy for each hybrid mode with and
variations. We use dependence for , , and
for these figures. The dependence for, , and is then

. These can be done by appropriately combining the
components of and dependence or by rewriting
the formulations with or dependence. For
hybrid modes, the directly available eigenfields are the TM
fields and . The other field components can be obtained
by first applying the divergence equation of the magnetic field
to compute the azimuthal magnetic field . The electric fields
are then obtained by the curl equation of the magnetic field.
For the present azimuthal dependence, these field components
can be written as

(10a)

(10b)

(10c)

(10d)

In Figs. 3–6, magnetic fields are shown in (a) and (b),
and electric fields in (c) and (d), respectively. Eigenfield
distributions, i.e., and fields, are shown in (b) in the
meridian plane for some as indicated by the dashed line
in (a). For modes, such a plane is

. For modes, that is .
This is because fields are maximum at such planes. Field
plots of electric components and are shown in (d)
in the meridian plane ( ) as indicated
by the dashed line in (c). The magnetic- and electric-field
components , , and , (or , , and , )
in the circular cross-section plane are also shown in (a) and
(c), respectively, at some constant, as indicated by the
dashed lines in (b) and (d), respectively. It is noted that
the electric and magnetic fields are in time quadrature with
each other. The magnetic fields lead the electric fields by

for Figs. 3–6. These field distributions are useful
for establishing the coupling or exciting structures for these
modes. For more clarity of field behaviors in those circular
cross-section planes, the corresponding normalized field plots
along the radial direction , , or ,
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(a) (c)

(b) (d)

Fig. 5. Field distributions ofEH21� mode for the same sapphire DR cavity as Fig. 3. (a)–(b) Magnetic and (c)–(d) electric fields in the planes, as shown
by the dashed lines in parts (b), (a), (d), and (c), respectively.

are shown in Figs. 7 and 8 for and modes,
respectively.

Let us investigate the characteristics of these field distribu-
tions. The length of arrows is proportional to the magnitude
of vectors within each part of these figures. Let us first take
an overview of these figures. It is seen from Fig. 3 that for
the mode, large magnetic fields are distributed mainly
in the DR but not small outside the DR, and large electric
fields are located outside the DR region. On the other hand, it
is seen from Fig. 4 that for the mode, large magnetic
fields are located in the DR region, and large electric fields
are not only in the DR but also extending to the support
regions. For Figs. 5 and 6, large field locations of the
and modes are somewhat like those of the and

modes, respectively. However, large magnetic fields
of the mode and large electric fields of the
mode are more concentrated inside the DR than the
and modes, respectively.

The field behavior shown in Figs. 3(a), 4(a), 5(a) and 6(a)
is examined to show the common and different characteristics
between modes. For the magnetic fields shown in Figs. 3(a)
and 4(a) for , there are some similarities between the

two plots at first glance. However, the fields of the
mode form curled loops, but those of the mode do
not. This can be confirmed by the plot in the upper part of
Fig. 7 that of the mode goes to negative before the
DR interface position as increases. While, of the
mode remains positive toward the metallic boundary. Thus,
the fields do not turn around. For the magnetic fields
shown in Figs. 5(a) and 6(a) for , these two fields are
very similar to each other, as also seen from the upper part of
Fig. 8. It is noted from Figs. 7 and 8 that the first derivative of

is discontinuous at the DR interface position, which can
be verified by (10d). For the electric fields shown in (c) and (d)
of Figs. 3–6, the normal components will become large near
the outside of the DR interfaces if they are not too small near
the inside of the DR interfaces. This is due to the continuity
of the normal components of electric displacement vectors

, and the permittivity difference between the two
mediums is about one order of magnitude. Thus, is not
continuous at mm, as shown in the lower parts of Figs. 7
and 8. For the modes in the circular planes of (c), most
fields are almost normal to the DR circumference, and in the
meridian planes of (d), most fields near the inside of the DR
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(a) (c)

(b) (d)

Fig. 6. Field distributions ofHE21� mode for the same sapphire DR cavity as Fig. 3. (a)–(b) Magnetic and (c)–(d) electric fields in the planes, as shown
by the dashed lines in parts (b), (a), (d), and (c), respectively.

interface are not nearly tangential to the DR periphery. Thus,
near the outside of the DR interface, mostfields increase and
are almost normal to the DR circumference or periphery. These
large fields extend normally to the metallic enclosure which
are not away from the DR interface. Hence, largefields are
maintained outside the DR region. On the other hand, for the

modes, it seemed that mostfields are tangential to the
DR circumference or periphery in (c) and (d). Thus, most fields
do not increase in magnitude outside the DR region except for
the mode in the support region. Hence, largefields
are maintained in the DR region.

Present field distributions with the aspect ratio are
compared to those of the open isotropic DR with
presented in [10] or [18, pp. 307–316]. It can be seen that field
patterns of the and modes are similar to those
of the corresponding and modes in [18],
even though the aspect ratios differ much. Since magnetic and
electric fields are mainly concentrated in the DR, the metallic
enclosure does not have much effect on these two modes. More
clearly, the mode is more like the corresponding mode
and less affected by the enclosure than the mode, for
which in the support regions, electric fields with large normal

components to DR interfaces still exist. On the other hand,
the mode is much deviated from the corresponding

mode in [18]. Since there are no enclosure cavity
in [18], all the resonant modes belong to DR-type or interior
modes [10, p. 191] in which the major electromagnetic fields
are located in or near the DR region. For the present
mode, large electric fields fill between the DR and enclosure
for the reasons stated in the preceding paragraph. Hence, the
metallic enclosure has a large effect on the mode to
change the field patterns of the original associated DR-type
mode. The fields of mode are not shown in [10] and
[18]. Based on the same reason as the mode, the
mode can be expected to be much affected by the enclosure
from the electric-field distributions. Therefore, thefield ori-
entations inside the DR region have much influence on whether
this mode is affected by the metallic enclosure. The and

modes are like the mixed-type modes, while the
and modes are like the DR-type modes [10, p. 191].

C. Parameter Analysis

The present numerical method can also analyze the cylindri-
cal cavity loaded with a uniaxially anisotropic dielectric ring
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Fig. 7. Normalized field plots ofHr(r), H�(r), Er(r), andE�(r) for EH11� andHE11� modes corresponding to Figs. 3 and 4.

Fig. 8. Normalized field plots ofHr(r), H�(r), Er(r), andE�(r) for EH21� andHE21� modes corresponding to Figs. 5 and 6.
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Fig. 9. Resonant frequency variations for the two cases in Table I as functions of the inner-to-outer diameter ratiod=D. Case 1:H = D. Case 2:H = D=2].

resonator without more complexity in formulations. Hence,
we will show the resonant frequency variations, if the two
rod sapphire DR cavities discussed in Table I are replaced by
rings with an inner diameter. For simplicity, supports are not
included, as shown in Fig. 1(b), in the following parameter
analyses. It can be expected that the influences of supports
are very small, as the dielectric constant of supports is very
close to that of the air. Resonant frequency variations for two
DR’s discussed in Table I are shown in Fig. 9 as functions of
the inner-to-outer diameter ratio . Height is equal to
diameter for Case 1, and is equal to one half of for
Case 2. We also perform the parameter study of heightfor
the rod DR in Case 1 and for the ring DR with .

The results are shown in Fig. 10. These mode charts are useful
for designing the DR cavity and for parameter optimization
of operating modes. It is seen from Fig. 9 that the
mode is fundamental when and separations from the
other modes are rather large in the whole range. The

mode is fundamental when and the resonant
frequency will be close to those of and modes as

increases. Where the fundamental mode is can be determined
by the for the present DR cavity. It is seen from Fig. 10
that the mode is fundamental when the ratio is
larger than about 0.7 and 0.6 for the rod and ring DR cavities,
respectively. While, the mode is fundamental when
is smaller. In addition, resonant frequencies of , ,
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Fig. 10. Resonant frequency variations for the rod DR cavity (d = 0) and the ring DR cavity (d=D = 0:5) as functions of the
height-to-outer-diameter ratioH=D.

and modes vary less for the whole range than
those of , , and modes do.

IV. CONCLUSION

The associated governing equations and boundary condi-
tions for resonant modes of the cavity loaded with a uniaxially
anisotropic DR have been rigorously analyzed and efficiently
solved by the FD–SIC method. For TM and hybrid modes, new
formulations are presented in compact form. The numerical
results of resonant frequencies are close to those with the
mode-matching method. In addition, field distributions of the
hybrid modes are provided to investigate the characteristics

of resonant modes. These field plots are also compared to
the renowned plots for the open isotropic DR. Due to the
versatile ability of the FD method, DR-loaded cavities with the
tuning element can be easily modeled. Therefore, the FD–SIC
method is very convenient in designing the sapphire or the
other single-crystal DR-loaded cavity resonators.
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